The PWM (Pulse Width Modulation) control signals have a drawback in that their power spectrum tends to be concentrated around the switching frequency and the resulting harmonic spikes cause an EMI (Electromagnetic Interference) and switching losses in semiconductors, etc. The SDM (Sigma-Delta Modulation) is a type of switching modulation used to reduce these harmonic spikes, and several SDM schemes are investigated in this paper. In the DSDM (Dithered SDM), the SDSDM (Space-Dithered SDM) and TDSDM (Time-Dithered SDM), the signals are classified by the location of their random dither additions. In these schemes, the switching frequency is spread by a random dither generator placed on the input or the output parts. Experimental results are presented where the advantages of the new proposed CDSDM (Combined Dithered SDM) are confirmed by applying to a buck converter.